
December 2001 www.stsc.hill.af.mil 23

In his keynote address at the 1996
International Conference on Software

Engineering, Tom De Marco summarized
the work of the great military analyst Karl
Von Clausewitz on the interplay of armor
and mobility in military conflict. De
Marco said Clausewitz proposed that at
times, armor would dominate mobility, as
with heavily armed medieval knights dom-
inating lightly armed peasantry. But if
over-optimized, one strategy will lose to
advances in the other, as the ponderous
French knights found in their inability to
dominate the lightly armed and mobile
English longbowmen in their watershed
loss to the English at Crecy in 1346.

De Marco then drew a parallel
between armor-intensive software strategies
such as the software Capability Maturity
Model® (CMM®) and the mobility-inten-
sive lightweight processes that were emerg-
ing at the time. He was inferring that the
software CMM was too ponderous to cope
with the need for rapid development and
rapid change characteristic of such sectors
as electronic commerce and Web-based
systems. In the ensuing discussion, soft-
ware CMM advocates cited the high mor-
tality rates of lightweight process organiza-
tions, and their frequent inability to cope
with success when they need to scale up
their process and architectures to deal with
more complex services and heavier work-
loads.

Underlying this point/counterpoint is
a key software-engineering question: How
much discipline is enough, and how much
flexibility is enough?

In Understanding the Spiral Model as a
Tool for Evolutionary Acquisition [1], we
showed that the risk exposure considera-
tions used as spiral model decision criteria
could be used to address how-much-is-
enough questions. There, we showed how a

how-much-testing-is-enough question could
be addressed by balancing the risks of
doing too little testing (alienating your
users) and the risks of doing too much
testing (unavailable combat capability,
missed market windows).

In this article, we show how the spiral
model and its recent extension, Model-
Based (system) Architecting and Software
Engineering (MBASE), can be used to tai-
lor a project’s balance of discipline and
flexibility via risk considerations. We also
describe and rationalize the major MBASE
extensions to the spiral model (model
clash avoidance, stakeholder win-win),
and elaborate on the use of these exten-
sions and risk considerations in the
anchor-point milestones used in MBASE
and the spiral model.

In subsequent articles, we will present
an attractive special case of MBASE, the
Schedule as an Independent Variable
(SAIV) process model, and present an
integration of the MBASE project
approach with the University of
Maryland’s Experience Factory approach,
which facilitates an organization’s transi-
tion to the Capability Maturity Model®-
IntegratedSM (CMMISM).

MBASE and Model Clash
Avoidance
Particularly for an invisible product such
as software, projects make use of various
process, product, property, and success
models to guide its progress. Process models
can include the waterfall model (sequen-
tial determination of the system’s require-
ments, design, and code); evolutionary
development (development of an initial
core capability, with full definition of
future increments deferred); incremental
development; spiral development; rapid
application development; adaptive devel-
opment; and many others.

Product models can include various
ways of specifying operational concepts,

requirements, architectures, designs, and
code, along with their interrelationships;
for example, the object-oriented design
models specified within the Rational
Unified Process, e.g., class and sequence
diagrams, use-cases, etc.

Property models can include models of
desired or acceptable cost, schedule, per-
formance, reliability, security, portability,
evolvability, reusability, etc., and their
tradeoffs, e.g., Constructive Cost Model II
(COCOMO II).

Success Models can include correctness
(satisfying the specified requirements),
organization and project goals, stakehold-
er win-win, business-case, Goal-Question-
Metric (GQM), or others such as IKI-
WISI (I’ll know it when I see it: a frequent
response when users are asked to specify
user-interface requirements).

Software architects and product devel-
opers are generally familiar with the con-
cept that trying to integrate two or more
arbitrarily selected products or product
models can lead to serious conflicts and
disasters. Some examples are mixing func-
tional and object-oriented components, or
the architectural style clashes you can
encounter when integrating commercial
off-the-shelf (COTS) products (see [2] for
a well-described case study involving fac-
tors of four and five overruns in schedule
and effort). Software process people are
similarly familiar with the serious effects of
trying to coordinate organizations with
clashing process models such as top-
down/bottom-up or CMM Level 1/Level
5.

However, relatively few people are
aware of the extent to which projects can
run into trouble because they choose
incompatible combinations of software
process, product, property, and success
models. Such clashes are not only frequent
and severe, but they are also hard to diag-
nose because they derive from different
sources and involve mismatched assump-
tions lying deep below the project’s written

Balancing Discipline and Flexibility
With the Spiral Model and MBASE

Dr. Barry Boehm and Dr. Daniel Port
University of Southern California, Center for Software Engineering

This article details how the spiral model and its recent extension, Model-Based Architecting and Software
Engineering (MBASE) can be used to tailor a project’s balance of discipline and flexibility via risk considerations.
It also describes and rationalizes the major MBASE extensions to the spiral model – model clash avoidance, stake-
holder win-win – and elaborates on the use of these extensions and risk considerations in the anchor-point mile-
stones used in MBASE and the spiral model.

Best Practices

®Capability Maturity Model and CMM are registered
in the U.S. Patent and Trademark Office.

SMCapability Maturity Model-Integrated and CMMI are
service marks of Carnegie Mellon University.

24 CROSSTALK The Journal of Defense Software Engineering December 2001

Best Practices

plans and specifications.
A good Department of Defense (DoD)

example was a deeply troubled project
encountered during the National Research
Council Ada and Beyond study [3]. This
project inherited a commitment to a
waterfall process model via its organiza-
tion’s commitment to DoD-STD-2167. It
also inherited a commitment to COTS-
based product model through the need to
comply with a secretary of defense man-
date.

The waterfall model assumes that the
requirements determine the capabilities,
and the project had contracted for a two-
second response time requirement. How-
ever, the contractor found that none of the
available COTS capabilities could process
the system workload with a two-second
response time, and was proceeding to
develop an expensive custom software sys-
tem to meet the two-second requirement.
The customer wanted the COTS-directive
product model to take precedence, and to
have the available COTS capabilities
determine the performance requirements.

Besides this difficult model clash, the

project had also inherited an Ada-based
product model via the DoD Ada mandate.
This clashed with the COTS model, since
some attractive COTS solutions did not
have adequate Ada bindings. Further,
none of the approaches were compatible
with the project’s success model of pro-
ducing an initial operational capability in
36 months; or with an additional proper-
ty model, which was being adopted by the
organization. This model was Cost As
Independent Variable, which would have
been difficult to satisfy when the project
already had at least four existing inde-
pendent variables.

This example covers only a small sub-
set of the model clashes a project can
encounter. Further discussions, examples,
and case studies can be found in [4] and
[5]. We have been able to use MBASE to
help other large government and commer-
cial projects to diagnose and avoid serious
model clashes, and have worked with
smaller companies to develop lightweight
versions of MBASE to balance discipline
and flexibility on rapid-development proj-
ects. After describing MBASE in the next

four sections, we will summarize how its
use could have avoided the DoD project
model clash dilemmas noted, followed by
a summary of MBASE usage to date.

MBASE Model Integration
Framework and Process
Framework
Figure 1 summarizes the overall model
integration framework used in the
MBASE approach to ensure that a pro-
ject’s success, product, process, and prop-
erty models are consistent and well inte-
grated. At the top of Figure 1 are success
models, illustrated with several examples,
whose priorities and consistency should be
considered first as they tend to drive the
selection and use of other models (includ-
ing other success models).

Thus, if the overriding top-priority
success model is to “demonstrate a com-
petitive agent-based electronic commerce
system on the floor of the COMDEX
trade show in nine months,” this con-
strains the ambition level of other success
models. It would be a major schedule risk
to insist on provably correct code or a fully
documented system. The nine-month
schedule constraint is most critical because
the system will lose most of its value if it is
not available to compete for early market
share at COMDEX.

The risk schedule overrun also deter-
mines many aspects of the product model
(architecture designed to easily shed lower-
priority features if necessary to meet
schedule), the process model (SAIV), and
various property models (portable and
reliable enough to achieve a successful
demonstration). The achievability of the
success model needs to be evaluated with
respect to the other models. Figure 1
shows that the choices of process and
product models need to be evaluated by
having the success model provide evalua-
tion criteria for the product milestone arti-
facts, and provide preconditions and post-
conditions (entry and exit criteria) for the
process milestones.

In the nine-month COMDEX demon-
stration example, a cost-schedule estima-
tion model would relate various product
characteristics (sizing of components,
reuse, product complexity), process char-
acteristics (staff capabilities and experi-
ence, tool support, process maturity), and
property characteristics (required reliabili-
ty, cost constraints) to determine whether
the product capabilities achievable in nine
months would be sufficiently competitive
for the success models. Thus, as shown at
the bottom of Figure 1, a cost and sched-
ule property model would be used for the

Process models

Life cycle anchor
points

Risk management
Key practices

Success models

Business case
IKIWISI

Stakeholder win-win

Property models
Cost

Schedule
Performance

Reliability

Product models

Planning and control

Milestone content
Evaluation and

analysis

Process
entry/exit
criteria

Product
evaluation

criteria

Domain model
Requirements
Architecture

Code
Documentation

Figure 1: Model-Based Architecting and Software Engineering Model Integration Framework

Figure 2: Model-Based Architecting and Software Engineering Process Framework

December 2001 www.stsc.hill.af.mil 25

Balancing Discipline and Flexibility With the Spiral Model and MBASE

evaluation and analysis of the consistency
of the system’s product, process, and suc-
cess models.

In other cases, the success model
would make a process model or a product
model the primary driver for model inte-
gration. An IKIWISI success model might
initially establish a prototyping and evolu-
tionary development process model leav-
ing most of the product features and prop-
erty levels to be determined by the evolu-
tionary development process. A success
model focused on developing a product
line of similar products would initially
focus on product models (domain models,
product line architectures), with process
models and property models subsequently
explored to perform a business-case analy-
sis of the most appropriate breadth of the
product line and the timing for introduc-
ing individual products.

Figure 2 provides an overall process
framework for the MBASE approach. The
primary drivers for any system’s (or prod-
uct line’s) characteristics are its key stake-
holders. These generally include the sys-
tem (taken below to mean system or prod-
uct-line) users, customers, developers, and
maintainers. Key stakeholders can also
include strategic partners, marketers, oper-
ators of closely coupled systems, and the
general public for such issues as safety,
security, privacy, or fairness.

The critical interests of these stake-
holders determine the priorities, desired
levels, and acceptable levels of various sys-
tem success criteria. These are reflected in
the success models for the system such as
stakeholder win-win, business case, organ-
ization and project goals, operational
effectiveness models, or IKIWISI. These
in turn determine which portions of an
applications domain and its environment
are relevant to consider in specifying the
system and its development and evolution
process. The particular objective is to
determine a system boundary, within
which the system is to be developed and
evolved; outside of which is the system
environment (and context).

For example, in our COMDEX elec-
tronic commerce application, the driving
success model is the nine-month schedule.
The system boundary would be deter-
mined by the most cost-effective set of
capabilities that could be developed in
nine months. Thus, a credit card verifica-
tion capability might be considered out-
side the initial system boundary, although
it would be needed later.

This latter point illustrates how
boundaries might (and will likely) change
over time, particularly in the face of evolv-
ing success models (e.g., the nature of a

competitive e-commerce system). For exam-
ple, if a compatible COTS credit card ver-
ification capability became available and
easy to integrate, it could be added within
the system boundary. Thus the domain
scope for the demo system would be very
much determined by the available COTS
products that could be tailored, integrat-
ed, and built upon.

Determining the appropriate combi-
nation of COTS products and extensions
could take several win-win spiral cycles of
experimental prototyping and risk resolu-
tion, in concert with cost-schedule model-
ing to determine how much capability
would be feasible to develop in nine
months. The appropriate process model
would be SAIV, which adds further prod-
uct model constraints, such as the need to
prioritize features and to design the system
architecture for ease of adding or dropping
marginal-priority features in order to min-
imize the risk of not meeting the nine-
month schedule.

A Different Balance of
Discipline and Flexibility:
Safe Air Traffic Control
With a different set of stakeholders and
success models, the same MBASE process
framework in Figure 2 will produce a dif-
ferent balance of discipline and flexibility.
In an air traffic control system, for exam-
ple, the key stakeholders will include the
airplane passengers and various regulatory
bodies whose success models involve a
very high level of system safety.

In this case, the success models will
reject high-risk product models, including
unreliable COTS products. The process
models will include considerably more dis-

cipline to eliminate safety risks at the
requirements, architecture, design, and
code levels. The key property model will
focus on safety rather than schedule,
although schedule considerations might
still affect the timing of various increments
of system capability. Thus, the different
risk patterns imposed by the stakeholders
and their success models will produce dif-
ferent sequences of product capabilities
and processes with different balances of
discipline and flexibility.

MBASE and Stakeholder
Win-Win
A common element in the e-commerce
and air traffic control examples is the need
to reconcile the key stakeholders’ success
models. Thus, a stakeholder win-win
negotiation process becomes a key step in
each spiral cycle of the MBASE approach,
as shown in Figure 3.

In the COMDEX application, for
example, the initial spiral cycle would
focus on evaluating COTS products and
scoping the overall system to be buildable
in nine months. In a subsequent spiral
cycle, the next-level stakeholders would
include representative users of the e-com-
merce system, and the reconciliation of
their win conditions would include proto-
typing of the user interface to eliminate
the risk of showing up at COMDEX with
an unfriendly user interface. The MBASE
tool support includes a groupware system
called Easy WinWin, which enables dis-
tributed stakeholders to enter their win
conditions and to negotiate mutually satis-
factory (win-win) agreements with other
stakeholders [6].

The win-win spiral model in Figure 3

Figure 3: The Win-Win Spiral Model

26 CROSSTALK The Journal of Defense Software Engineering December 2001

provides another view of how risk consid-
erations are used to reconcile stakeholder
success conditions in terms of product,
process, and property models. A comple-
mentary view was shown in Figure 2 (see
page 24), which also identifies the win-
win spiral model’s role in guiding the early
feedback cycles involved in defining and
reconciling the system’s domain, product,
process, and property models.

MBASE and Life-Cycle
Anchor Points
MBASE also adopts and extends the six
Spiral Model Essentials presented in our
May 2001 CrossTalk article [1] and
summarized in Table 1. The stakeholder
commitment to proceed in Essential 2 is
implemented via the win-win spiral model
as shown in Figure 3 (see page 25).
MBASE adopts Essential 5 by using its
life-cycle anchor points as critical review
and management decision points. It
adopts Essentials 3 and 4 on risk manage-
ment via continuous risk identification,
risk assessment, and risk exposure reduc-
tion, and Essentials 1 and 6 via a concur-
rent engineering approach to both system
and software issues.

The life-cycle anchor points are
described further in the side bar located on
page 27. As shown in Figure 2, one of
them is the Life Cycle Architecture mile-
stone. It includes a product definition, a
process definition, and a feasibility ration-

ale ensuring the compatibility of the sys-
tem’s product, process, property, and suc-
cess models. From this base, the project
can continue to construct the system by
refining the product models into an exe-
cuting product up through a third mile-
stone, the Initial Operating Capability.

The specific content of the first two
anchor point milestones is summarized in
the sidebar. It includes increasingly
detailed, risk-driven definitions of the sys-
tem’s operational concept, prototypes,
requirements, architectures, life-cycle
plan, and feasibility rationale. For the fea-
sibility rationale, property models are
invoked to help verify that the project’s
success models, product models, process
models, and property levels or models are
acceptably consistent.

The first milestone is the Life Cycle
Objectives (LCO) milestone, at which
management verifies the basis for a busi-
ness commitment to proceed at least
through an architectural stage. This
involves verifying that there is at least one
system architecture and choice of
COTS/reuse components that is shown to
be feasible to implement within budget
and schedule constraints to satisfy key
stakeholder win conditions and to gener-
ate a viable investment business case.

The second milestone is the Life Cycle
Architecture (LCA) milestone, at which
management verifies the basis for a sound
commitment to product development and
evolution. This is a particular system
architecture with specific COTS and reuse
commitments that is shown to be feasible
with respect to budget, schedule, require-
ments, operations concept and business
case; identification and commitment of all
key life-cycle stakeholders; and elimina-
tion of all critical risk items. The
AT&T/Lucent Architecture Review Board
technique [7] is an excellent management
review approach involving the LCO and
LCA milestones. It is similar to the highly
successful recent DoD best practice of
software Independent Expert Program
Reviews [8].

The third anchor point is the system’s
Initial Operational Capability (IOC),
defined further in [9]. The LCO, LCA,
and IOC have become the key milestones
in the Rational Unified Process [10, 11,
12]. There are many possible minor mile-
stones (adjusted to the particular project as
needed) that may lie between LCO and
IOC and several important post-deploy-
ment milestones beyond IOC. Table 2
summarizes the pass/fail criteria for the
LCO, LCA, and IOC anchor points.

The focus of the LCO review is to
ensure that at least one architecture choice
is viable from a business perspective. The
focus of the LCA review is to commit to a
single detailed definition of the review
artifacts. The project must have either
eliminated all significant risks or put in
place an acceptable risk-management plan.
The focus of the IOC review, also called
the Transition Readiness Review, is to
ensure that the initial users, operators, and
maintainers (generally equivalent to beta-
testers) are fully prepared to successfully
operate the delivered system. If the
pass/fail criteria for any review are not sat-
isfied, the package should be reworked.

We determined these anchor point
milestones as common commitment
points across commercial, aerospace, and
government organizations when searching
with our University of Southern
California (USC) Center for Software
Engineering Affiliates for a set of common
milestones for referencing COCOMO II
cost and schedule estimates. They work
well as common commitment points
across a variety of process model variants
because they reflect similar commitment
points during one’s lifetime.

The LCO milestone is the equivalent
of getting engaged, and the LCA mile-
stone is the equivalent of getting married.
As in life, if you marry your architecture in
haste, you and your stakeholders will
repent at leisure (if, in Internet time, any
leisure time is available). The third anchor
point milestone, the IOC, constitutes an
even larger commitment: It is the equiva-
lent of having your first child with all the
associated commitments of care and feed-
ing of a legacy system.

To return to our DoD 2167/
COTS/Ada/deadline/CAIV model clash
example on page 24, at the latest it would
have failed its LCO milestone review by
being unable to demonstrate that a
COTS-based architecture could satisfy the
two-second response time requirement.
Even earlier, though, this model clash
would have been picked up by the
MBASE process framework in Figure 2, in
feeding back to the stakeholders the need

Best Practices

Table 2: LCO, LCA, and IOC Pass/Fail Criteria

Table 1: Essentials of the Spiral Model

December 2001 www.stsc.hill.af.mil 27

to revise their success models to permit a
clash-free solution. This would involve
additional win-win spiral cycles to deter-
mine a mutually satisfactory (win-win)
combination of features, budgets, sched-
ules, increments, and COTS choices.

MBASE Usage Experience
For the past five years, USC has used and
refined MBASE extensively within its two-
semester graduate software-engineering
course. The students work on a Web-based
electronic services project for a real USC
client (frequently a digital library applica-
tion for the university information servic-
es division) from initial system definition
through transition, utilizing a specialized
form of MBASE. This specialization
includes particular tools and models such
as Easy WinWin, Rational Rose,
MSProject, and elements of the Rational
Unified Process. More than 100 real-client
projects have used MBASE, and over 90
percent have delivered highly satisfactory
products on very short fixed schedules.
The annual lessons learned have been
organized into an extensive set of usage
guidelines and an Electronic Process
Guide [13], all accessible at <http://sun-
set.usc.edu/research/MBASE>. In the
spring of 1999, MBASE was used in both
the undergraduate and graduate software
engineering courses at Columbia
University. Although these are single
semester courses, MBASE was successfully
adapted to help student teams complete a
full project life cycle for real clients.

Within industry, Xerox has adopted
many elements of MBASE to form its
time-to-market process, including the use
of the LCO and LCA anchor points as
synchronization points for the hardware
and software portions of their printer
product definitions.

As mentioned previously, Rational has
adopted the LCO, LCA, and IOC anchor
points within their Rational Unified
Process while MBASE adopted Rational’s
Inception-Elaboration-Construction-
Transition phase definitions.

C-Bridge has mapped their define,
design, develop, deploy rapid development
methodology for e-commerce systems to
the MBASE spiral model.

The Internet startup company Media
Connex adopted MBASE and used Easy
WinWin to establish win-win relation-
ships among their key stakeholders. Each
of these companies converged on different
balances of discipline and flexibility to sat-
isfy their stakeholders’ success models.

Additionally, there are numerous com-
panies and organizations directly making

Balancing Discipline and Flexibility With the Spiral Model and MBASE

The Spiral Model Essential
Life-Cycle Anchor Points

Best Practices

28 CROSSTALK The Journal of Defense Software Engineering December 2001

use of MBASE elements within their proj-
ect development efforts. For example, the
U.S. Army Tank and Automotive
Command has used Easy WinWin and
other MBASE elements to reconcile its
software technology organizations’ process
and product strategies.

Conclusions and Future
Directions
The ability to balance discipline and flexi-
bility is critical to developing highly
dependable software-intensive systems in a
rapidly changing environment. The
MBASE integration framework, process
framework, and associated guidelines pro-
vide a set of risk-driven techniques that
elaborate on the spiral model and the
Rational Unified Process enabling an
organization to achieve an appropriate bal-
ance of discipline and flexibility for each
of its projects.

However, this requires a large number
of guidelines to keep all of a complex soft-
ware system’s process, product, property,
and success models well integrated across
all of the phases and activities in the soft-
ware-system life cycle. In some ways, we
have been able to reduce this complexity.
One way is by providing tools and tem-
plates for MBASE artifacts via the
MBASE Electronic Process Guide [13].

Another way is to develop special
domain-specific models such as for the
digital library domain that enables student
teams to learn the development principles
and successfully develop moderate-sized
Web-based applications in 24 weeks [14].

Third is to develop specialized models
for particular situations, such as the SAIV
process model we will discuss in an
upcoming CrossTalk article.

A future challenge is to extend the
project-oriented MBASE approach to
address organization-level software and
system process issues. In January
CrossTalk, we will present an integra-
tion of MBASE with the University of
Maryland’s Experience Factory approach
[15], and show how it can help organiza-
tions transition to the CMMI.

Acknowledgements
We would like to acknowledge the support
of the Defense Advanced Research
Projects Agency and the National Science
Foundation in establishing and refining
MBASE, the DoD Software Intensive
Systems Directorate in supporting its
application to DoD projects and organiza-
tions, and the affiliates of the USC Center
for Software Engineering for their contri-
butions to MBASE.u

References
1. Boehm, B., and W. Hansen, eds. “The

Spiral Model as a Tool for Evolutionary
Acquisition.” CrossTalk May
2001, pp. 4-9.

2. Garlan, D., R. Allen, and J.
Ockerbloom, eds. “Architectural
Mismatch: Why Reuse Is So Hard.”
IEEE Software November 1995, pp.
17-26.

3. Boehm, B., et al. “Ada and Beyond:
Software Policies for the DoD.”
National Academy Press, 1997.

4. Boehm, B., and D. Port, eds.
“Escaping the Software Tar Pit: Model
Clashes and How to Avoid Them.”
ACM Software Engineering Notes
January 1999, pp. 36-48.

5. Boehm B., D. Port, and M. AlSaid,
eds. “Avoiding the Software Model
Clash Spider Web.” IEEE Software
November 2000, pp. 120-122.

6. Boehm, B., P. Gruenbacher, and R.
Briggs, eds. “Developing Groupware
for Requirements Negotiation: Lessons
Learned.” IEEE Software May/June
2001, pp. 46-55.

7. Marenzano, J., “System Architecture
Validation Review Findings,” in D.
Garlan (ed.). ICSE-17 Architecture
Workshop Proceedings. CMU,

Pittsburgh, PA, 1995.
8. Report of the Defense Science Board

Task Force on Defense Software.
Defense Science Board. OUSD
(A&T), November 2000.

9. Boehm, B. “Anchoring the Software
Process.” IEEE Software July 1996, pp.
73-82.

10.Royce, W.E. Software Project
Management: A Unified Framework.
Addison-Wesley, 1998.

11.Jacobson, I., G. Booch, and J.
Rumbaugh, eds. The Unified Software
Development Process. Addison-
Wesley, 1999.

12.Kruchten, P. The Rational Unified
Process (2nd ed.). Addison-Wesley,
2000.

13.MBASE Guidelines and MBASE
Electronic Process Guide. USC-CSE.
<http://sunset.usc.edu/research/MBASE>.

14.Boehm, B., A. Egyed, J. Kwan, D.
Port, A. Shah, and R. Madachy, eds.
“Using the WinWin Spiral Model: A
Case Study.” Computer July 1998, M.
33-44

15.Basili, V., G. Caldeira, and H.
Rombach, eds. “The Experience
Factory,” in J. Marciniak (ed.).
Encyclopedia of Software Engineering.
Wiley, 1994.

About the Authors
Barry Boehm, Ph.D., is
the TRW professor of
software engineering
and director of the
Center for Software
Engineering at the

University of Southern California. He
was previously in technical and man-
agement positions at General
Dynamics, Rand Corp., TRW, the
Defense Advanced Research Process
Agency, and the Office of the Secretary
of Defense as the director of Defense
Research and Engineering Software
and Computer Technology Office. Dr.
Boehm originated the spiral model, the
Constructive Cost Model (COCO-
MO), and the stakeholder win-win
approach to software management and
requirements negotiation.

University of Southern California
Center for Software Engineering
Los Angeles, CA 90089-0781
Phone: (213) 740-8163
Fax: (213) 740-4927
E-mail: boehm@sunset.usc.edu

Daniel Port, Ph.D., is a
research assistant pro-
fessor of Computer
Science and an associ-
ate of the Center for
Software Engineering

at the University of Southern
California. He received a doctorate
degree from the Massachusetts
Institute of Technology, and a bache-
lor’s degree from the University of
California, Los Angeles. His previous
positions were assistant professor of
Computer Science at Columbia
University, director of Technology at
the USC Annenburg Center EC2
Technology Incubator, co-founder of
Tech Tactics, Inc., and a project lead
and technology trainer for NeXT
Computers, Inc.

University of Southern California
Center for Software Engineering
Los Angeles, CA 90089-0781
Phone: (213) 740-7275
Fax: (213) 740-4927
E-mail: dport@sunset.usc.edu

